Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Med Oncol ; 41(5): 120, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643333

RESUMEN

Gastric cancer (GC) is a serious malignant tumour with a high mortality rate and a poor prognosis. Recently, emerging evidence has suggested that N6-methyladenosine (m6A) modification plays a crucial regulatory role in cancer progression. However, the exact role of m6A regulatory factors FTO in GC is unclear. First, the expression of m6A methylation-related regulatory factors in clinical samples and the clinical data of the corresponding patients were obtained from The Cancer Genome Atlas (TCGA-STAD) dataset, and correlation analysis between FTO expression and patient clinicopathological parameters was subsequently performed. qRT-PCR, immunohistochemistry (IHC) and western blotting (WB) were used to verify FTO expression in GC. CCK-8, EdU, flow cytometry and transwell assays were used to evaluate the effect of FTO on the behaviour of GC cells. Transcriptome sequencing and RNA immunoprecipitation analysis were used to explore the potential regulatory mechanisms mediated by FTO. FTO was highly expressed in GC tissues and cells, and high expression of FTO predicted a worse prognosis than low expression. Functionally, overexpression of FTO promoted the proliferation, migration and invasion of GC cells but inhibited cell apoptosis. Mechanistically, we found that FTO is upregulated in GC and promotes GC progression by modulating the expression of MAP4K4. Taken together, our findings provide new insights into the effects of FTO-mediated m6A demethylation and could lead to the development of new strategies for GC monitoring and aggressive treatment.


Asunto(s)
Adenina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Pronóstico , Regulación Neoplásica de la Expresión Génica , Desmetilación , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38642887

RESUMEN

STUDY OBJECTIVE: To explore the effectiveness of transvaginal natural orifice transluminal endoscopic surgery extraperitoneal sacral hysteropexy (vNOTES-ESH) in women with symptomatic uterine prolapse over a two year follow-up. DESIGN: Retrospective cohort study. SETTING: Gynaecological minimally invasive centre. PATIENTS: Women undergoing sacral hysteropexy either by vNOTES (n=25) or laparoscopic (n=74) between November 2016 and December 2020. INTERVENTIONS: Both vNOTES-ESH and laparoscopic sacral hysteropexy (LAP-SH) were used for uterine prolapse. Demographic data, operative characteristics, perioperative outcomes, and follow-up information two years post-surgery in the two groups were retrospectively evaluated. RESULTS: Both procedures showed similar operation time, estimated blood loss, hospital stays, and pain scores(P>0.05). During a median follow-up of 59 (24-72) months, the surgical success rate was 96% for vNOTES-ESH and 97.3% for LAP-SH (P > 0.05), with no differences in anatomical position or pelvic organ function after the operation. Women in the LAP-SH group experienced more bothersome symptoms of constipation compared to those in the vNOTES-ESH group (5.41% VS. 0, P < 0.05). Lastly, one case in the vNOTES-ESH group had a mesh exposed area of less than 1 cm2, and one patient in the LAP-SH group experienced stress incontinence. CONCLUSIONS: In this retrospective study, vNOTES-ESH met our patients' preference for uterine preservation and was a successful and effective treatment for uterine prolapse, providing good functional improvement in our follow up. This procedure should be considered as an option for patients with pelvic organ prolapse.

3.
Front Biosci (Landmark Ed) ; 29(3): 117, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38538279

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) modification is one of the most common RNA modifications in mammals. m6A modification, and associated abnormal gene expression, occur during various biological processes, most notably tumorigenesis. YTH domain-containing family protein 1 (YTHDF1), a m6A reader, bind to messenger RNAs (mRNAs) containing a m6A modification and this enhances its interaction with the ribosome and promotes translation. The function of YTHDF1 in gastric cancer (GC) has been the subject of earlier studies; however, the precise mechanism underlying YTHDF1's role in GC has not been fully elucidated. METHODS: The expression of YTHDF1 was evaluated using quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry and western blotting. CCK-8, 5-Ethynyl-2'-deoxyuridine (EdU) and flow cytometry assays were utilized to explore the effect of YTHDF1 on GC cell viability and proliferation. Transcriptome sequencing and RNA immunoprecipitation assays were utilized to explore the underlying mechanisms mediated by YTHDF1. RESULTS: We observed that YTHDF1 is upregulated in GC cancer tissues. Knockdown of YTHDF1 in GC cells significantly inhibited proliferation and promoted apoptosis, suggesting that YTHDF1 increases proliferation and blocks apoptosis in GC cells. Mechanistically, data gathered suggest that YTHDF1 promotes the translation of the transcription factor TCF7 and this results in activation of the WNT signaling axis. CONCLUSIONS: We found that YTHDF1 was upregulated in GC and that YTHDF1 could promote GC progression through modulating the translational efficiency of TCF7. Taken together, these findings may provide a novel therapeutic target for GC.


Asunto(s)
Neoplasias Gástricas , Animales , Neoplasias Gástricas/genética , Apoptosis/genética , ARN , Biosíntesis de Proteínas , Proliferación Celular/genética , Mamíferos
4.
Adv Sci (Weinh) ; : e2400485, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552151

RESUMEN

Immunotherapy is showing good potential for colorectal cancer therapy, however, low responsive rates and severe immune-related drug side effects still hamper its therapeutic effectiveness. Herein, a highly stable cerasomal nano-modulator (DMC@P-Cs) with ultrasound (US)-controlled drug delivery capability for selective sonodynamic-immunotherapy is fabricated. DMC@P-Cs' lipid bilayer is self-assembled from cerasome-forming lipid (CFL), pyrophaeophorbid conjugated lipid (PL), and phospholipids containing unsaturated chemical bonds (DOPC), resulting in US-responsive lipid shell. Demethylcantharidin (DMC) as an immunotherapy adjuvant is loaded in the hydrophilic core of DMC@P-Cs. With US irradiation, reactive oxygen species (ROS) can be effectively generated from DMC@P-Cs, which can not only kill tumor cells for inducing immunogenic cell death (ICD), but also oxidize unsaturated phospholipids-DOPC to change the permeability of the lipid bilayers and facilitate controlled release of DMC, thus resulting in down-regulation of regulatory T cells (Tregs) and amplification of anti-tumor immune responses. After intravenous injection, DMC@P-Cs can efficiently accumulate at the tumor site, and local US treatment resulted in 94.73% tumor inhibition rate. In addition, there is no detectable systemic toxicity. Therefore, this study provides a highly stable and US-controllable smart delivery system to achieve synergistical sonodynamic-immunotherapy for enhanced colorectal cancer therapy.

5.
ACS Nano ; 18(8): 6314-6332, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38345595

RESUMEN

Immune checkpoint blockade (ICB) therapy still suffers from insufficient immune response and adverse effect of ICB antibodies. Chemodynamic therapy (CDT) has been demonstrated to be an effective way to synergize with ICB therapy. However, a low generation rate of reactive oxygen species and poor tumor penetration of CDT platforms still decline the immune effects. Herein, a charge-reversal nanohybrid Met@BF containing both Fe3O4 and BaTiO3 nanoparticles in the core and Metformin (Met) on the surface was fabricated for tumor microenvironment (TME)- and ultrasound (US)-activated piezocatalysis-chemodynamic immunotherapy of cancer. Interestingly, Met@BF had a negative charge in blood circulation, which was rapidly changed into positive when exposed to acidic TME attributed to quaternization of tertiary amine in Met, facilitating deep tumor penetration. Subsequently, with US irradiation, Met@BF produced H2O2 based on piezocatalysis of BaTiO3, which greatly enhanced the Fenton reaction of Fe3O4, thus boosting robust antitumor immune response. Furthermore, PD-L1 expression was inhibited by the local released Met to further augment the antitumor immune effect, achieving effective inhibitions for both primary and metastatic tumors. Such a combination of piezocatalysis-enhanced chemodynamic therapy and Met-mediated deep tumor penetration and downregulation of PD-L1 provides a promising strategy to augment cancer immunotherapy.


Asunto(s)
Metformina , Nanopartículas , Neoplasias , Humanos , Antígeno B7-H1 , Peróxido de Hidrógeno , Inmunoterapia , Neoplasias/tratamiento farmacológico , Metformina/farmacología , Microambiente Tumoral , Línea Celular Tumoral
6.
J Clin Invest ; 134(8)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412034

RESUMEN

Adoptive transfer of T cell receptor-engineered T cells (TCR-T) is a promising strategy for immunotherapy against solid tumors. However, the potential of CD4+ T cells in mediating tumor regression has been neglected. Nasopharyngeal cancer is consistently associated with EBV. Here, to evaluate the therapeutic potential of CD4 TCR-T in nasopharyngeal cancer, we screened for CD4 TCRs recognizing EBV nuclear antigen 1 (EBNA1) presented by HLA-DP5. Using mass spectrometry, we identified EBNA1567-581, a peptide naturally processed and presented by HLA-DP5. We isolated TCR135, a CD4 TCR with high functional avidity, that can function in both CD4+ and CD8+ T cells and recognizes HLA-DP5-restricted EBNA1567-581. TCR135-transduced T cells functioned in two ways: directly killing HLA-DP5+EBNA1+ tumor cells after recognizing EBNA1 presented by tumor cells and indirectly killing HLA-DP5-negative tumor cells after recognizing EBNA1 presented by antigen-presenting cells. TCR135-transduced T cells preferentially infiltrated into the tumor microenvironment and significantly inhibited tumor growth in xenograft nasopharyngeal tumor models. Additionally, we found that 62% of nasopharyngeal cancer patients showed 50%-100% expression of HLA-DP on tumor cells, indicating that nasopharyngeal cancer is well suited for CD4 TCR-T therapy. These findings suggest that TCR135 may provide a new strategy for EBV-related nasopharyngeal cancer immunotherapy in HLA-DP5+ patients.


Asunto(s)
Neoplasias Nasofaríngeas , Ratones , Animales , Humanos , Neoplasias Nasofaríngeas/terapia , Herpesvirus Humano 4 , Receptores de Antígenos de Linfocitos T , Linfocitos T CD4-Positivos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral
7.
Plant Sci ; 342: 112038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38367821

RESUMEN

Malus 'Pinkspire' is regulated by abscisic acid (ABA), which results in a red colour, but the regulatory relationship between ABA and anthocyanin synthesis has not been determined. The key factors affecting the colour change of M. 'Pinkspire' peel were investigated during the periods of significant colour changes during fruit ripening. The results showed that the transcription factor MpbZIP9 associated with ABA was screened by transcriptomic analysis. MpbZIP9 expression was consistent with the trend of structural genes expression for anthocyanin synthesis in the peel during fruit ripening, as well as with changes in the content of ABA, which is a positive regulator. A yeast one-hybrid assay showed that MpbZIP9 can directly bind to the promoter of MpF3'H. Dual luciferase reporter gene assays and GUS staining experiments showed that MpbZIP9 significantly activate MpF3'H expression. In addition, overexpression of the MpbZIP9 significantly enhanced anthocyanin accumulation and the expression of genes involved in anthocyanin synthesis. In contrast, virus-induced silencing of the MpbZIP9 significantly reduced the expression of structural genes involved in anthocyanin synthesis. These results suggest that the MpbZIP9 transcription factor can regulate the synthesis of peel anthocyanin and is a positive regulator that promotes anthocyanin biosynthesis by activating MpF3'H expression.


Asunto(s)
Malus , Malus/genética , Frutas/genética , Frutas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Antocianinas/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Artículo en Inglés | MEDLINE | ID: mdl-38360523

RESUMEN

Purpose: The prevalence of chronic rhinosinusitis ( CRS) is on the rise annually, and the absence of efficacious treatments imposes a substantial burden on both patients and society. The formation of nasal polyps in patients wi th CRS is cl osely related to tissue remodeling, and tissue remodeling is primarily influenced by epithelial mesenchymal transition (EMT). MicroRNA (miRNA) play s a pivotal role in the pathogenesis of numerous diseases through the miRNA mRNA regulatory network; however, the specific mechanism of miRNAs involved in the formation of nasal polyps is not clear. Methods: The expression of EMT markers and Smad3 were detected using western blot, quantitative real time polymerase chain reaction (qRT‒PCR), and immunohistochemistry, immunofluorescence staining. Differentially expressed genes in nasal polyps and normal tissues were screened through the gene expression omnibus (GEO) da tabase. To predict the target genes of miR 145 5p three different miRNA target prediction databases were used. The migratory ability of cells was verified by cell migration assay and wound h ealing assays. Results: miR 145 5p was linked with the process of EMT and significantly down regulation within the nasal polyp tissues. In vitro experiments, we found that miR 145 5p downregulation promoted EMT. The elevation in miR 145 5p levels reversed the EMT induce d by transforming growth factor ß1 ( TGF ß1). Bioinformatics found that miR 145 5p has a targeting relationship with Smad3. It is demonstrated that miR 145 5p exerts inhibitory Smad3 expression through further experiments. Conclusion: Overall, miR 145 5p emerges as a promising target to inhibit nasal polyp formation , and provide a theoretical basis for nanoparticle mediated miR 145 5p delivery for the treatment of nasal polyps.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38372766

RESUMEN

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a lethal hypovascular tumor surrounded by dense fibrosis. Albumin-bound paclitaxel and gemcitabine (AG) chemotherapy is the mainstay of PDAC treatment through depleting peritumoral fibrosis and killing tumor cells; however, it remains challenging due to the lack of a noninvasive imaging method evaluating fibrotic changes during AG chemotherapy. In this study, we developed a dual-modality imaging platform that enables noninvasive, dynamic, and quantitative assessment of chemotherapy-induced fibrotic changes through near-infrared fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI) using an extradomain B fibronectin (EDB-FN)-targeted imaging probe (ZD2-Gd-DOTA-Cy7). METHODS: The ZD2-Gd-DOTA-Cy7 probe was constructed by conjugating a peptide (Cys-TVRTSAD) to Gd-DOTA and the near-infrared dye Cy7. PDAC murine xenograft models were intravenously injected with ZD2-Gd-DOTA-Cy7 at a Gd concentration of 0.05 mmol/kg or free Cy7 and Gd-DOTA as control. The normalized tumor background ratio (TBR) on FMI and the T1 reduction ratio on MRI were quantitatively analyzed. For models receiving AG chemotherapy or saline, MRI/FMI was performed before and after treatment. Histological analyses were performed for validation. RESULTS: The ZD2-Gd-DOTA-Cy7 concentration showed a linear correlation with the fluorescence intensity and T1 relaxation time in vitro. The optimal imaging time was 30 min after injection of the ZD2-Gd-DOTA-Cy7 (0.05 mmol/kg), only half of the clinic dosage of gadolinium. Additionally, ZD2-Gd-DOTA-Cy7 generated a 1.44-fold and 1.90-fold robust contrast enhancement compared with Cy7 (P < 0.05) and Gd-DOTA (P < 0.05), respectively. For AG chemotherapy monitoring, the T1 reduction ratio and normalized TBR in the fibrotic tumor areas were significantly increased by 1.99-fold (P < 0.05) and 1.78-fold (P < 0.05), respectively, in the control group compared with those in the AG group. CONCLUSION: MRI/FMI with a low dose of ZD2-Gd-DOTA-Cy7 enables sensitive imaging of PDAC and the quantitative assessment of fibrotic changes during AG chemotherapy, which shows potential clinical applications for precise diagnosis, post-treatment monitoring, and disease management.

10.
ACS Biomater Sci Eng ; 10(3): 1774-1787, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38420991

RESUMEN

Inflammation is considered to be the main target of the development of new stroke therapies. There are three key issues in the treatment of stroke inflammation: the first one is how to overcome the blood-brain barrier (BBB) to achieve drug delivery, the second one is how to select drugs to treat stroke inflammation, and the third one is how to achieve targeted drug delivery. In this study, we constructed hydrocortisone-phosphatidylserine microbubbles and combined them with ultrasound (US)-targeted microbubble destruction technology to successfully open the BBB to achieve targeted drug delivery. Phosphatidylserine on the microbubbles was used for its "eat me" effect to increase the targeting of the microvesicles. In addition, we found that hydrocortisone can accelerate the closure of the BBB, achieving efficient drug delivery while reducing the entry of peripheral toxins into the brain. In the treatment of stroke inflammation, it was found that hydrocortisone itself has anti-inflammatory effects and can also change the polarization of microglia from the harmful pro-inflammatory M1 phenotype to the beneficial anti-inflammatory M2 phenotype, thus achieving dual anti-inflammatory effects and enhancing the anti-inflammatory effects in ischemic areas after stroke, well reducing the cerebellar infarction volume by inhibiting the inflammatory response after cerebral ischemia. A confocal microendoscope was used to directly observe the polarization of microglial cells in living animal models for dynamic microscopic visualization detection showing the advantage of being closer to clinical work. Taken together, this study constructed a multifunctional targeted US contrast agent with the function of "one-stone-two-birds", which can not only "on-off" the BBB but also have "two" anti-inflammatory functions, providing a new strategy of integrated anti-inflammatory targeted delivery and imaging monitoring for ischemic stroke treatment.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Microburbujas , Barrera Hematoencefálica , Hidrocortisona/uso terapéutico , Fosfatidilserinas , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico
11.
Nat Ecol Evol ; 8(2): 339-351, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195998

RESUMEN

Zokors, an Asiatic group of subterranean rodents, originated in lowlands and colonized high-elevational zones following the uplift of the Qinghai-Tibet plateau about 3.6 million years ago. Zokors live at high elevation in subterranean burrows and experience hypobaric hypoxia, including both hypoxia (low oxygen concentration) and hypercapnia (elevated partial pressure of CO2). Here we report a genomic analysis of six zokor species (genus Eospalax) with different elevational ranges to identify structural variants (deletions and inversions) that may have contributed to high-elevation adaptation. Based on an assembly of a chromosome-level genome of the high-elevation species, Eospalax baileyi, we identified 18 large inversions that distinguished this species from congeners native to lower elevations. Small-scale structural variants in the introns of EGLN1, HIF1A, HSF1 and SFTPD of E. baileyi were associated with the upregulated expression of those genes. A rearrangement on chromosome 1 was associated with altered chromatin accessibility, leading to modified gene expression profiles of key genes involved in the physiological response to hypoxia. Multigene families that underwent copy-number expansions in E. baileyi were enriched for autophagy, HIF1 signalling and immune response. E. baileyi show a significantly larger lung mass than those of other Eospalax species. These findings highlight the key role of structural variants underlying hypoxia adaptation of high-elevation species in Eospalax.


Asunto(s)
Altitud , Roedores , Animales , Filogenia , Roedores/genética , Hipoxia/genética , Variación Estructural del Genoma
12.
Mater Today Bio ; 24: 100926, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38179429

RESUMEN

Immunotherapy as a milestone in cancer treatment has made great strides in the past decade, but it is still limited by low immune response rates and immune-related adverse events. Utilizing bioeffects of ultrasound to enhance tumor immunotherapy has attracted more and more attention, including sonothermal, sonomechanical, sonodynamic and sonopiezoelectric immunotherapy. Moreover, the emergence of nanomaterials has further improved the efficacy of ultrasound mediated immunotherapy. However, most of the summaries in this field are about a single aspect of the biological effects of ultrasound, which is not comprehensive and complete currently. This review proposes the recent progress of nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. The concept of immunotherapy and the application of bioeffects of ultrasound in cancer immunotherapy are initially introduced. Then, according to different bioeffects of ultrasound, the representative paradigms of nanomaterial augmented sono-immunotherapy are described, and their mechanisms are discussed. Finally, the challenges and application prospects of nanomaterial augmented ultrasound mediated cancer immunotherapy are discussed in depth, hoping to pave the way for cancer immunotherapy and promote the clinical translation of ultrasound mediated cancer immunotherapy through the reasonable combination of nanomaterials augmented ultrasonic bioeffects.

13.
ACS Appl Mater Interfaces ; 16(1): 292-304, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38133932

RESUMEN

Rotator cuff tear (RCT) is a prevalent shoulder injury that poses challenges for achieving continuous and functional regeneration of the tendon-to-bone interface (TBI). In this study, we controlled the delivery of growth factors (GFs) from liposomal nanohybrid cerasomes by ultrasound and implanted three-dimensional printed polycaprolactone (PCL) scaffolds modified with polydopamine loaded with bone marrow mesenchymal stem cells (BMSCs) to repair tears of the infraspinatus tendon in a lapine model. Direct suturing (control, CTL) was used as a control. The PCL/BMSC/cerasome (PBC) devices are sutured with the enthesis of the infraspinatus tendon. The cerasomes and PCL scaffolds are highly stable with excellent biocompatibility. The roles of GFs BMP2, TGFß1, and FGF2 in tissue-specific differentiation are validated. Compared with the CTL group, the PBC group had significantly greater proteoglycan deposition (P = 0.0218), collagen volume fraction (P = 0.0078), and proportions of collagen I (P = 0.0085) and collagen III (P = 0.0048). Biotin-labeled in situ hybridization revealed a high rate of survival for transplanted BMSCs. Collagen type co-staining at the TBI is consistent with multiple collagen regeneration. Our studies demonstrate the validity of biomimetic scaffolds of TBI with BMSC-seeded PCL scaffolds and GF-loaded cerasomes to enhance the treatment outcomes for RCTs.


Asunto(s)
Células Madre Mesenquimatosas , Poliésteres , Andamios del Tejido , Biomimética , Tendones , Colágeno/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células de la Médula Ósea
14.
J Transl Med ; 21(1): 816, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974192

RESUMEN

BACKGROUND: Precancerous lesions of cervical cancer exhibit characteristics indicative of natural progression. To prevent overtreatment of patients whose cervical intraepithelial neoplasia (CIN) in regression and to predict the onset of invasive cervical cancer at an early stage, we've identified the vaginal microbiome as a potential key factor, which is associated with both HPV infection and the various cervical intraepithelial neoplasia. This study aims to investigate the microbiome characteristics of patients with various cervical intraepithelial neoplasia. METHODS: Utilizing high-throughput 16S ribosomal RNA (16S rRNA) sequencing technology, a description of the characteristics and community composition of Vaginal Microbiota (VMB) was conducted among 692 Chinese women infected with the High-risk Human Papillomavirus (HR-HPV). RESULTS: As the grade of the lesions increased, the proportions of Lactobacillus and Pseudomonas demonstrated a significant declining trend, while the proportions of Gardnerella, Dialister, and Prevotella significantly increased. The diversity of the VMB was more significant in high-grade CIN. Furthermore, KEGG pathway enrichment analysis indicates that high-grade cervical intraepithelial neoplasia can inhibit various pathways, including those of phosphotransferase system, transcription factors, Fructose and mannose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism, which may contribute to the development of early cervical cancer symptoms. CONCLUSION: Patients with CIN exhibit a distinct vaginal microbial profile characterized by a decrease in Lactobacillus and Pseudomonas, and an increase in Gardnerella, Prevotella, and Dialister. The proliferation and diminution of these two types of microbial communities are interrelated, suggesting a mutual restraint and balance among them. Disruption of this regulatory balance could potentially lead to the onset of cervical lesions and carcinogenesis. Retrospectively registered: This study was approved by the Ethics Committee of the Beijing Chaoyang Hospital affiliated with the Capital Medical University (NO.2023-S-415).


Asunto(s)
Microbiota , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/patología , Estudios Transversales , ARN Ribosómico 16S/genética , Displasia del Cuello del Útero/diagnóstico , Displasia del Cuello del Útero/patología , Lactobacillus/genética
15.
Front Microbiol ; 14: 1270916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901814

RESUMEN

Introduction: Soil ecosystems are threatened by crude oil contamination, requiring effective microbial remediation. However, our understanding of the key microbial taxa within the community, their interactions impacting crude oil degradation, and the stability of microbial functionality in oil degradation remain limited. Methods: To better understand these key points, we enriched a crude oil-degrading bacterial consortium generation 1 (G1) from contaminated soil and conducted three successive transfer passages (G2, G3, and G4). Integrated Co-occurrence Networks method was used to analyze microbial species correlation with crude oil components across G1-G4. Results and discussion: In this study, G1 achieved a total petroleum hydrocarbon (TPH) degradation rate of 32.29% within 10 days. Through three successive transfer passages, G2-G4 consortia were established, resulting in a gradual decrease in TPH degradation to 23.14% at the same time. Specifically, saturated hydrocarbon degradation rates ranged from 18.32% to 14.17% among G1-G4, and only G1 exhibited significant aromatic hydrocarbon degradation (15.59%). Functional annotation based on PICRUSt2 and FAPROTAX showed that functional potential of hydrocarbons degradation diminished across generations. These results demonstrated the functional instability of the bacterial consortium in crude oil degradation. The relative abundance of the Dietzia genus showed the highest positive correlation with the degradation efficiency of TPH and saturated hydrocarbons (19.48, 18.38, p < 0.05, respectively), Bacillus genus demonstrated the highest positive correlation (21.94, p < 0.05) with the efficiency of aromatic hydrocarbon degradation. The key scores of Dietzia genus decreased in successive generations. A significant positive correlation (16.56, p < 0.05) was observed between the Bacillus and Mycetocola genera exclusively in the G1 generation. The decline in crude oil degradation function during transfers was closely related to changes in the relative abundance of key genera such as Dietzia and Bacillus as well as their interactions with other genera including Mycetocola genus. Our study identified key bacterial genera involved in crude oil remediation microbiome construction, providing a theoretical basis for the next step in the construction of the oil pollution remediation microbiome.

16.
Nat Commun ; 14(1): 6187, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794000

RESUMEN

Gadolinium (Gd3+)-coordinated texaphyrin (Gd-Tex) is a promising radiosensitizer that entered clinical trials, but temporarily fails largely due to insufficient radiosensitization efficacy. Little attention has been given to using nanovesicles to improve its efficacy. Herein, Gd-Tex is transformed into building blocks "Gd-Tex-lipids" to self-assemble nanovesicles called Gd-nanotexaphyrins (Gd-NTs), realizing high density packing of Gd-Tex in a single nanovesicle and achieving high Gd-Tex accumulation in tumors. To elucidate the impact of O2 concentration on Gd-Tex radiosensitization, myoglobin (Mb) is loaded into Gd-NTs (Mb@Gd-NTs), resulting in efficient relief of tumor hypoxia and significant enhancement of Gd-Tex radiosensitization, eventually inducing the obvious long-term antitumor immune memory to inhibit tumor recurrence. In addition to Gd3+, the versatile Mb@Gd-NTs can also chelate 177Lu3+ (Mb@177Lu/Gd-NTs), enabling SPECT/MRI dual-modality imaging for accurately monitoring drug delivery in real-time. This "one-for-all" nanoplatform with the capability of chelating various trivalent metal ions exhibits broad clinical application prospects in imaging-guided radiosensitization therapy.


Asunto(s)
Neoplasias , Fármacos Sensibilizantes a Radiaciones , Humanos , Gadolinio , Mioglobina , Oxígeno , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Imagen por Resonancia Magnética
18.
Carcinogenesis ; 44(8-9): 662-670, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37624090

RESUMEN

OBJECTIVES: This research aimed to construct a prediction model for stages II and III cardia carcinoma (CC), and provide an effective preoperative evaluation tool for clinicians. METHODS: CC mRNA expression matrix was obtained from Gene Expression Omnibus and The Cancer Genome Atlas databases. Non-negative matrix factorization was used to cluster data to obtain subgroup information, and weighted gene co-expression network analysis was used to uncover key modules linked to different subgroups. Gene-set enrichment analysis analyzed biological pathways of different subgroups. The related pathways of multiple modules were scrutinized with Kyoto Encyclopedia of Genes and Genomes. Key modules were manually annotated to screen CC-related genes. Subsequently, quantitative real-time polymerase chain reaction assessed CC-related gene expression in fresh tissues and paraffin samples, and Pearson correlation analysis was performed. A classification model was constructed and the predictive ability was evaluated by the receiver operating characteristic curve. RESULTS: CC patients had four subgroups that were associated with brown, turquoise, red, and black modules, respectively. The CC-related modules were mainly associated with abnormal cell metabolism and inflammatory immune pathways. Then, 76 CC-elated genes were identified. Pearson correlation analysis presented that THBS4, COL14A1, DPYSL3, FGF7, and SVIL levels were relatively stable in fresh and paraffin tissues. The area under the curve of 5-gene combined prediction for staging was 0.8571, indicating good prediction ability. CONCLUSIONS: The staging classifier for CC based on THBS4, COL14A1, DPYSL3, FGF7, and SVIL has a good predictive effect, which may provide effective guidance for whether CC patients need emergency surgery.


Asunto(s)
Carcinoma , Neoplasias Gástricas , Humanos , Cardias , Parafina , Neoplasias Gástricas/genética , Algoritmos
19.
Genes Dis ; 10(6): 2614-2621, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37554183

RESUMEN

Gastric carcinoma (GC) progression is mainly caused by local aggression and lymph node metastasis. However, some patients with early T-stage disease have lymph node metastasis, whereas some patients with late T-stage disease do not have lymph node metastasis, which indicates that invasion and metastasis are not always sequential in some GC patients. In the present study, the data of 101 GC cases were acquired from TCGA and divided into T-late-N-negative and T-early-N-positive groups according to pathological stages. A total of 338 genes were identified as differential genes between the T-late-N-negative and T-early-N-positive groups. GSEA showed that epithelial cell signaling in the Helicobacter pylori (HP) infection pathway was enriched in the T-early-N-positive group. MB staining indicated that the HP infection rate was 63% (39/62) in N-positive patients compared to 42% (16/38) in N-negative patients. To investigate the potential mechanism, we focused on the gene chemokine (C-X-C motif) receptor 2 (CXCR2), which was not only clustered in the gene set of epithelial cells signaling in the HP infection pathway but also significantly upregulated in T-early-N-positive GC by the analysis of the different genes based on the TCGA dataset. A meta-analysis showed that CXCR2 expression was positively correlated with N-stage but not with T-stage in GC. This study indicated that invasion and metastasis could be independent processes driven by different molecular mechanisms in some GC patients. HP infection was a potential factor that promoted lymph node metastasis by upregulating CXCR2 expression.

20.
Aquac Nutr ; 2023: 8627246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457792

RESUMEN

This study evaluated the effects of defatted superworm (Zophobas atratus) larvae meal (DBWLM) as an alternative protein ingredient for juvenile Pacific white shrimp (Penaeus vannamei). Six isonitrogenous and isolipidic experimental diets were characterized by replacing 0%, 15%, 30%, 45%, 60%, and 75% fish meal (DBWLM0, DBWLM15, DBWLM30, DBWLM45, DBWLM60, and DBWLM75, respectively) with DBWLM on a w/w basis and feeding them to juvenile shrimp (0.34 ± 0.04 g) for 56 days. The results showed that the replacement of up to 75% fish meal by DBWLM had no negative effect on the growth performance of P. vannamei. The survival of shrimp in the DBWLM30 group was the highest, and the weight gain, specific growth rate, feed conversion ratio, condition factor, and apparent digestibility coefficients of dry matter in the DBWLM15 group were the highest. The substitution of DBWLM for fish meal significantly increased the elasticity of flesh, improved the total content of umami amino acids in flesh (aspartic acid, glutamic acid, glycine, and alanine), promoted lipid metabolism in shrimp, and reduced serum lipid levels. With the increase in DBWLM level, serum acid phosphatase, alkaline phosphatase activity, and intestinal inflammatory gene expression (IGF-1 and IL-6) were inhibited, malondialdehyde content decreased, and total antioxidant capacity level and superoxide dismutase activity increased significantly. Histological sections of the hepatopancreas showed that when 60% or more fish meal was replaced, the hepatopancreas atrophied and had irregular lumen distortion, but the cell membrane was not damaged. Microbiome analysis showed that the abundance of Bacteroidetes and Firmicutes increased and the abundance of Proteobacteria decreased in the DBWLM replacement group, and it was rich in "metabolism"-related functional pathways. It is worth mentioning that the expression of amino-acid-related enzymes was upregulated in the DBWLM15 and DBWLM30 groups, and the DBWLM75 group inhibited the biosynthesis of steroids and hormones. To conclude, the replacement of 15%-45% fish meal with DBWLM can result in better growth and immune status, improved meat elasticity, and reduced inflammation in P. vannamei. However, it is recommended that the replacement level should not exceed 60%, otherwise it will cause atrophy of hepatopancreas cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...